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Abstract—Knowledge management of concepts was essential in educational environment. The popular fuzzy c-means algorithm (FCM) 

converges to a local minimum of the objective function. Fuzzy clustering algorithms are based on Euclidean distance function, which can only 

be used to detect spherical structural clusters. A Fuzzy C-Means algorithm based on Mahalanobis distance (FCM-M) was proposed to improve 

those limitations of GG and GK algorithms, but it is not stable enough when some of its covariance matrices are not equal. Hence, different 

initializations may lead to different results. The important issue is how to avoid getting a bad local minimum value to improve the cluster 

accuracy. The particle swarm optimization (PSO) is a popular and robust strategy for optimization problems. But the main difficulty in applying 

PSO to real-world applications is that PSO usually need a large number of fitness evaluations before a satisfying result can be obtained. A new 

improved Fuzzy Clustering Algorithm with Picard Iteration is proposed. In this paper, the improved new algorithm, Use the best performance of 

clustering algorithm in data analysis and interpretation. Each cluster of data can easily describe features of knowledge structures. Manage the 

knowledge structures of Concepts to construct the model of features in the pattern recognition completely. 
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I. INTRODUCTION  

In the 1930s, as an Indian statistician, Mahalanobis developed 

the distance, so called “Mahalanobis distance” which is a 

distance by using the inverse of the covariance matrix as the 

metric. Mahalanobis distance is a distance in the geometrical 

sense because the covariance matrices as well as its inverse 

are positive definite matrices [1], [2]. 

As we known, the clustering plays an important role in 

data analysis and interpretation. It groups the data into classes 

or clusters so that the data objects within a cluster have high 

similarity in comparison to one another, but are very 

dissimilar to those data objects in other clusters. FCM 

algorithm was based on Euclidean distance function, which 

can only be used to detect spherical structural clusters. To 

overcome the drawback due to Euclidean distance, we could 

try to extend the distance measure to Mahalanobis distance 

with recursive process iteratively. However, Krishnapuram 

and Kim (1999) [3] pointed out that the Mahalanobis distance 

can not be used directly in clustering algorithm. Gustafson-

Kessel (GK) clustering algorithm [4] and Gath-Geva(GG) 

clustering algorithm[5] were developed to detect non-spherical 

structural clusters. In GK-algorithm, a modified Mahalanobis 

distance with preserved volume was used. However, the added 

fuzzy covariance matrices in their distance measure were not 

directly derived from the objective function. 

The popular fuzzy c-means algorithm (FCM) is developed 

by using Picard Iteration through the first-order conditions for 

stationary points of the objective function. It converges to a 

local minimum of the objective function. Hence, different 

initializations may lead to different results. The important 

issue is how to avoid getting a bad local minimum value to 

improve the cluster accuracy. The particle swarm optimization 

(PSO) is a popular and robust strategy for optimization 

problems. A new improved Fuzzy Clustering Algorithm with 

Picard Iteration is proposed. 

II. LITERATURE REVIEW AND NEW ALGORITHMS.  

The new fuzzy clustering algorithm based on normalized 

Mahalanobis distance which use the homogenous correlation 

matrix for each cluster, called the Fuzzy C-Means algorithm 

based on Homogenous correlation matrix. The Euclidean 

distance based fuzzy clustering algorithms, such as Bezdek’s 

fuzzy clustering algorithms which can only be used to detect 

the data classes with the same super spherical shapes. Use 

alternative distance instead of Euclidean distance as a distance 

measurement. The shortcoming of Gustafson-Kessel algorithm 

is different fuzzy covariant matrix corresponding to different 

geometric, but it can't change its volume. To overcome the 

drawback due to Euclidean distance, we could try to extend 

the distance measure to alternative distance with recursive 

process iteratively. The experimental results of real data sets 

show that our proposed new algorithms get the better 

performance if data distribution approach to overlapping too 

dense or the data structure is not almost spherical. 

A. Fuzzy c-Mean Algorithm 

Fuzzy c-Mean Algorithm (FCM) is the most popular 

objective function based fuzzy clustering algorithm, it is first 

developed by Dunn [6] and improved by Bezdek [7]. The 

objective function used in FCM is given by Equation (1) 
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 0,1ij   is the membership degree of data object 
jx in 

cluster 
iC  and it satisfies the following constraint given by 

Equation (2) 

1

1, 1,2,...,
c

ij

i

j n


    (2) 

C is the number of clusters, m is the fuzzier, m>1, which 

controls the fuzziness of the method. They are both parameters 

and need to be specified before running the algorithm. 
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ij j id x a  is the square of the Euclidean distance between 

data object 
jx to center

ia . Minimizing objective function Eq. 

(1) with constraint Eq. (2) is a non-trivial constraint nonlinear 

optimization problem with continuous parameters 
ia  and 

discrete parameters
ij . So there is no obvious analytical 

solution. Therefore an alternating optimization scheme, 

alternatively optimizing one set of parameters while the other 

set of parameters are considered as fixed, is used here. Then 

the updating function for 
ia  and 

ij  is obtained as Eq. (3) ~ 

(4). 

The steps of the FCM are as follows. 

Step 1: Determining the number of cluster; c and m-value 

(let m=2), given converging error, 0  (such as 0.001  ), 

randomly choose the initial membership matrix, such that the 

memberships (0) 1, 1,2,..., , 1,2,...,iju i c j n    are not all 

equal; 

Step 2: Find 
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Step 3: Increment k; until  
   1

1
max

k k

i i
i c

a a 


 
   

B. FCM-M Algorithm 

Now, for improving the above two problems, we added a 

regulating factor of covariance matrix, 1ln i
  , to each 

class in objective function, and deleted the constraint of the 

determinant of covariance matrices, i iM  , in GK 

Algorithm as the objective function (5). We can obtain the 

objective function of Fuzzy c-Mean based on adaptive 

Mahalanobis distance (FCM-M) as following: 

 
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 (5) 

Proposed by our previous study [9], the algorithm “Fuzzy 

c-Mean based on adaptive Mahalanobis distance (FCM-M)”, 

is obtained by using the Lagrange multiplier method and the 

following two theorems, Thm 1 and Thm 2 to minimize the 

objective function (5) with constraint (2) respect to parameters 

ia , 
j , 

ij , 
i . 
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We can get the updating equations as follows. 
1

1 1

, 1,2,...,
n n

m m

i ij ij j

j j

a x i c 



 

   
    
   
   (9) 

   

   

1
1

1
1

11

,

1,2,..., , 1,2,...,

m
c

j i i j i

ij

s
j s i j s

x a x a

x a x a

i c j n










 
      
        

 

 


 (10) 

  
1

1

, 1,2,..,

n
m

ij j i j i

j

i n
m

ij

j

x a x a

i c









 

  




  (11) 

The steps of the FCM-M are as follows. To avoid the 

singular problem, we let 
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 (12) 

and we select the better initial membership matrix, the 

updating functions for 
ia , 

ij , and 
i  are obtained as Eq. (17), 

(18), and (21). 

The steps of the FCM-M are as follows. 

Step 1: Determining the number of cluster; c and m-value 

(let m=2), given converge error, 0  (such as 0.001  ). 

Method 1: choose the result membership matrix of FCM 

algorithm as the initial one. 

Method 2: let  0
, 1,2,...,ia i c  be the result centers of k-

mean algorithm.  

 0

ij j id x a   be distances between data object 
jx  to 

center  0

ia . 
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Step 2: Find  
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Step 3: Increment k; until    1

1
max

k k

i i
i c

a a 


 
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C. New Algorithm Fuzzy Clustering Algorithm with Picard 

Iteration  

Particle Swarm Optimization (PSO) is a quite convenient 

method for optimizing hard numerical function on metaphor 

of social behavior of flocks of birds and schools of fish [8]. A 

swarm consist M individuals, called particles, which change 

their position over time. Each particle represents a potential 

solution to the problem of optimization. In FCM, the problem 

of optimization is to minimize the value of the objective 

function. Let the particle k in a D-dimension space (D=nc) be 

represented as  

(1) Let the particle k in a D-dimension space (D=nc) be 

represented as 
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(2) Let the objective function of FCM be the fitness function 

as follows, 
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(4) Let the objective function of FCM be the fitness function 

as follows, 
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(5) The best previous position (which possesses the best 

fitness value) of particle k is denoted by  1 2 ), ,...,k k k kDp p p p , 

which is also called bestp .  

(6) The index of the best 
bestp  among all the particles is 

denoted by the symbol g. The location  1 2 ), ,...,g g g gDp p p p  is 

also called
bestg . 

The velocity for the particle k is represented 

as  1 2, ,...,k k k kDv v v v . 

(7)
bestp ,and
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two formulas, 
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Where w is the inertia coefficient which is a constant in the 

interval [0,1], and can be adjusted in the direction of linear 
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decrease, (In this paper w=0.75);
1c  and 

2c  are learning rates 

which are nonnegative constants(In this paper, 
1 2 2c c  ); 

1r  

an 
2r are generated randomly in the interval [0,1]. 

The termination criterion for iterations is determined 

according to whether the maximum generation or a designated 

value of the fitness is reached. In this paper, the given 

converging error is 0.001   

   i i
1£i£c
max a t+1 -a t <ε=0.001 

where  
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  (30) 

III. EMPIRICAL ANALYSIS AND RESULTS 

The Fuzzy C-Means algorithm (FCM) is the most popular 

objective function based fuzzy clustering algorithm.The 

performances of clustering Algorithm FCM, FCM-M, and new 

algorithm Fuzzy Clustering Algorithm with Picard Iteration all 

with the fuzzier m=2, are compared in these experiments. The 

results of FCM, GK, and GG are obtained by applying the 

Matlab toolbox developed by [9]. 

A. Equations Style 

The mean clustering accuracies of 100 different initial 

value sets of three algorithms for the Datasets. The 

performances of clustering Algorithm all with m=2, are 

compared in these experiments.  

 

TABLE I. The characteristics of 3 clusters. 

Cluster Sample size Concepts 
Average distance 

of center 

1 50 Setosa 0.481705 

2 50 Versicolor 0.706870 

3 50 Virginica 0.819339 

 

The balance Iris Data [10] with sample size 150 which 

features of the Iris data contains Length of Sepal, Width of 

Sepal, Length of Petal, and Width of Petal. The samples were 

assigned the original 3 clusters based on the clustering 

analysis. The Iris data with sample size 150 is used as first 

example. The features of the Iris data contain Length of Sepal, 

Width of Sepal, Length of Petal, and Width of Petal. The 

samples were assigned the original 3 clusters based on the 

clustering analysis. The results were shown in table I. 
The results were shown in table II. 

 
TABLE II. Classification accuracies of testing samples. 

Algorithm Accuracies (%)  

FCM 89.33 

FCM-M  90.00 

New Algorithm 92.67 

 

From table II, we find that the New Algorithm Fuzzy 

Clustering Algorithm with Picard Iteration has the best result, 

up to 92.67%. 

The balance Wdbc Data with sample size 569 which 

features of the Wdbc data contains 30 attributes. The samples 

were assigned the original 2 clusters based on the clustering 

analysis. Data set comes from the University of California at 

Irvine (UCI) Machine Learning Repository was used in the 

empirical study. The mean clustering accuracies of 100 

different initial value sets of FCM, FCM-M, FCM-NEW for 

the Datasets. From table III, we find that the New Algorithm 

Fuzzy Clustering Algorithm with Picard Iteration has the best 

result, up to 89.97. 

 
TABLE III. The Accuracies of three Algorithms for Wdbc data 

Algorithm Accuracies (%)  

FCM 79.78 

FCM-M  79.89 

New Algorithm 89.97 

 

The data set was collected from Min-Hwei Junior College 

of Health Care Management in Taiwan is an achievement test 

on medicine and technology of nursing with 345 task-takers. 

About the data set contained 20 dichotomous items which 

measured five attributes. According to their scores of 

achievement test, we can group the students into 3 concepts. 

 
TABLE IV. The Accuracies of three Algorithms for 345 students data 

Algorithm Accuracies (%)  

FCM 69.78 

FCM-M  69.89 

New Algorithm 79.78 

 

The mean clustering accuracies of 100 different initial 

value sets of FCM, FCM-M, FCM-NEW for the Datasets. 

From table III, we find that the New Algorithm Fuzzy 

Clustering Algorithm with Picard Iteration has the best result, 

up to 79.78. 

An improved new fuzzy clustering algorithm is developed 

to obtain better quality of fuzzy clustering result. The 

objective function includes the regulating terms about the 

covariance matrices. The equations for the memberships and 

the cluster centers and the covariance matrices are directly 

derived from the Lagrange’s method. The fuzzy c-mean 

algorithm is different from the FCM and FCM-M algorithms. 

The singular problem and detecting the local extreme value 

problem are improved by the Eigenvalue method and the 

algorithm of Particle Swarm Optimization. Finally, four 

numerical examples showed that the new fuzzy clustering 

algorithm with Picard Iteration gave more accurate clustering 

results than that of FCM and FCM-M algorithms. 

IV. CONCLUSION 

The clustering analysis plays an important role in data 

analysis and interpretation. It groups the data into classes or 

clusters so that the data objects within a cluster have high 

similarity in comparison to one another, but are very 

dissimilar to those data objects in other clusters. FCM is based 

on Euclidean distance function, which can only be used to 

detect spherical structural clusters. GK algorithm and GG 

algorithm were developed to detect non-spherical structural 

clusters. However, GK algorithm needs added constraint of 

fuzzy covariance matrix, GG algorithm can only be used for 
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the data with multivariate Gaussian distribution. 

To overcome the drawback due to Euclidean distance, we 

could try to extend the distance measure to Mahalanobis 

distance. However, Krishnapuram and Kim (1999) pointed out 

that the Mahalanobis distance can’t be used directly in 

clustering algorithm. 

In GK-algorithm, a modified Mahalanobis distance with 

preserved volume was used. However, the added fuzzy 

covariance matrices in their distance measure were not 

directly derived from the objective function. In GG algorithm, 

the Gaussian distance can only be used for the data with 

multivariate normal distribution. To add a regulating factor of 

each covariance matrix to each class in the objective function, 

and deleted the constraint of the determinants of covariance 

matrices in the GK algorithm. 

Pal, Pal and Bezdek’s Fuzzy Possibility C-Means (FPCM) 

(1997) are all based on Euclidean distance measure for 

clustering. Hence, those fuzzy partition clustering algorithms 

can only be used for the data set with the same super spherical 

shape for each class. Instead of using Euclidean distance 

measure, Gustafson and Kessel (1979) proposed the G-K 

algorithm which employs the Mahalanobis distance. It is a 

fuzzy partition clustering algorithm which can be used for the 

classes with different geometrical shapes in the data set.  

However, without the prior information of the shape 

volume for each class, the G-K algorithm can only be utilized 

for the classes with the same volume. In other words, if any 

dimension of a class is greater than the number of samples in 

the class, the estimated covariance matrix of the class may not 

be fully ranked. Hence, the algorithm will induce the singular 

problem for the inverse covariance matrix. Furthermore, An 

improved fuzzy new algorithm with Picard Iteration can 

improve the stability of the clustering results is proposed [11, 

12]. We know that applying the fuzzy covariance matrices to 

compute the value from the objective function in Mahalanobis 

distances. Now, the fuzzy covariance matrices were not 

directly derived from the whole date in Gath-Geva clustering 

algorithm. So the correct rate of grouping is less performance. 

However Gath-Geva clustering algorithm can only be used for 

the data with multivariate Gaussian distribution. Hence our 

goal is to improve those limitations, and has better 

performance. 

The Gustafson-Kessel algorithm cannot adjustment the 

fuzzy covariant matrix corresponding to different geometric, 

So the disadvantages of Gustafson-Kessel algorithm is that it 

can't change its volume. The experimental results of six real 

data sets consistently show that the performance of our 

proposed new algorithm is better than those of the GK and GG 

algorithms. For benchmark data sets; Iris data and Wdbc data, 

those have shown that the improved fuzzy partition 

algorithms, new algorithm are better than FCM and FCM-M 

[13-17]. Apply new algorithm to identify the master concepts 

for comparing the performances of other two partition 

algorithms, FCM and FCM-M. The result also shows that new 

fuzzy clustering algorithm with Picard Iteration is better than 

other two fuzzy partition algorithms. 

APPENDIX 

The mean clustering accuracies of 100 different initial 

value sets of three algorithms for the Datasets. The 

performances of clustering Algorithm all with m=2, are 

compared in these experiments. 

 
TABLE V. Clustering accuracies of experiment for 100 initial value sets. 

FCM FCM-M NEW Algorithm 

63.33% 69.89% 84.43% 

65.83% 79.98% 84.43% 

64.17% 78.78% 81.97% 

65.00% 77.78% 82.95% 

64.17% 79.78% 79.70% 

73.13% 78.78% 88.55% 

69.13% 69.98% 86.07% 

51.67% 79.78% 84.43% 

65.08% 73.61% 84.43% 

45.08% 73.77% 84.43% 

70.00% 77.21% 84.43% 

65.08% 78.85% 78.69% 

65.78% 70.49% 86.43% 

6408% 73.77% 84.43% 

62.30% 74.59% 87.70% 

69.18% 73.77% 84.43% 

65.08% 78.85% 78.69% 

69.18% 73.77% 84.43% 

65.08% 73.77% 84.43% 

55.08% 79.51% 87.43% 

69.51% 81.15% 88.03% 

55.08% 80.33% 84.43% 

55.08% 73.77% 84.43% 

66.39% 72.13% 86.43% 

63.11% 75.41% 89.43% 

63.77% 76.23% 84.43% 

72.95% 74.59% 87.70% 

56.72% 65.57% 84.43% 

52.62% 73.77% 84.43% 

63.77% 67.21% 84.43% 

65.57% 73.77% 84.43% 

55.08% 76.23% 84.43% 

65.08% 73.77% 83.61% 

69.95% 73.77% 80.49% 

67.87% 68.03% 84.43% 

61.31% 73.77% 81.97% 

55.08% 73.77% 82.79% 

65.08% 73.77% 84.43% 

61.31% 73.77% 81.97% 

55.08% 73.77% 82.79% 

55.74% 73.77% 78.20% 

55.08% 73.77% 84.43% 

59.84% 81.97% 84.43% 

45.08% 73.77% 84.43% 

73.77% 81.15% 84.43% 

65.08% 73.77% 84.43% 

63.77% 76.23% 84.43% 

72.95% 74.59% 87.70% 

56.72% 65.57% 84.43% 

52.62% 73.77% 84.43% 

63.77% 67.21% 84.43% 

65.57% 73.77% 84.43% 

55.08% 76.23% 84.43% 

65.08% 73.77% 83.61% 

69.95% 73.77% 80.49% 
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FCM FCM-M NEW Algorithm 

61.31% 78.77% 81.97% 

55.08% 75.97% 82.79% 

65.08% 73.87% 84.43% 

65.08% 77.79% 84.43% 

55.08% 79.51% 87.43% 

69.51% 81.15% 88.03% 
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