
 International Journal of Scientific Engineering and Science
Volume 1, Issue 9, pp. 40-46, 2017. ISSN (Online): 2456-7361

40

http://ijses.com/

All rights reserved

Supporting IOT Low-Power Embedded Devices with

Smart Gateway: Proof of Concept and

Implementation

Dina Darwish
1
, Adel Elzalabany

2
, Osman Ibrahim

3

1
Multimedia and Internet Department, International academy for Engineering and Media Science, 6

th
 October, Giza, Egypt

2, 3
Informatics and Computer Science Faculty, The British University in Egypt, Cairo, Egypt

Abstract— Internet of Things (IoT) is a concept that depends on enabling a variety of things existing in the environment to interact with each

other and cooperate with other objects through wireless and wired connections and unique addressing schemes to create new applications and

reach common goals. Internet of Things (IoT) is considered as a promising technology that can provide a boom of reforms, including the

combination of wireless communication technologies, embedded systems, mobile applications and cloud technology. Most of the IOT

technologies that have emerged recently, concentrate on a single intelligent product rather than the integration of the different IoT network

components. There is a huge need nowadays to integrate all these technologies together in an internet connected world. In this paper, we focus

on providing IoT-based devices with important communication services. These IoT-based devices represent a smart home scenario, along with

embedded appliances, mobile devices and centralized home gateway.

Keywords— IoT, things, smart gateway, sensors, big data.

I. INTRODUCTION

The aim of the Internet of Things is to allow communication

between things at anytime, anyplace, with anything and

anyone using any network and any service. Internet of Things

can be considered as an evolution of the Internet. Objects have

the ability to recognize themselves, and they obtain

intelligence by taking context related decisions, due to the

fact, that they can exchange information about themselves.

They can reach information that has been generated by other

things, and they can act as components of complex services.

New types of applications can emerge, such as; the electric

vehicle and the smart house, in which appliances and services

that deliver notifications, security, energy-saving, automation,

telecommunication, computers and entertainment, are merged

into a single system with a shared user interface. But,

everything has to take time to be in its ideal place. Smart

environments can be realized in Europe nearer to 2020 [1], by

developing the IoT technology through demonstrating, testing

and deploying products.

Current Internet architecture as a design conception is

limited, since it does not contain free information exchange

between data and service levels; this fact triggers a race

between academic and industry for designing the future

Internet, in which ensuring information interoperability is a

key challenge [2-4]. A fully coordinated course in terms of

design and implementation has not happened, and this is

considered as an undesired result of this race, due to many

complex issues including especially deployment over

particular diverse infrastructures. There is a lot of other

research performed in the different areas of IoT, including

networks types and devices types, as well as challenges facing

the IoT.

In this paper we represent a whole description about the

web application project. In section 2, related research work to

this area is discussed. In section 3, the requirements and tools

used in the web project application were provisioned. In

section 4, we introduce the system architecture. Section 5

illustrates the system design supported by class and sequence

diagrams. Eventually, section 6 discusses in details

implementation issues. In section 7, future work is proposed.

Finally, conclusion is explained in section 8, followed by

references.

II. RELATED WORK

In the following sections, we are going to discuss briefly

some researches done in different areas to evolve the IoT.

Paper [5] illustrates the use of WLAN as an intermediate

backbone connecting lots of sensors and devices. This creates

miniature gateways, that allow the use of the multi-radio

capability of the short-range radio chips, such as, chipsets

supporting simultaneous use of Bluetooth low energy and

WLAN. These miniature gateways exchange data through

Bluetooth low energy down-stream and WLAN up-stream. In

[6], we explore the IoT application space for the goal of

determining two known challenges, that exist across this

space; ultra-low power operation and system design using

modular components. Then, a survey is done on recent low

power techniques. Finally, a low power bus, that enables

modular design, is proposed. Paper [7] provides a

comprehensive model for the power consumption of wireless

sensor nodes, which represents all the energy expenditures at

system-level. The model depends only on parameters that can

be empirically quantified, once the platform and the

application are determined. This results in a new framework

for the study and analysis of the energy live-cycle within the

applications. In [8], the IoT gateway problem is discussed,

because today’s gateways conflate network connectivity, in-

network processing, and user interface functions. Authors

expect that solving these problems would enhance the

 International Journal of Scientific Engineering and Science
Volume 1, Issue 9, pp. 40-46, 2017. ISSN (Online): 2456-7361

41

http://ijses.com/

All rights reserved

connectivity potential for IoT devices, and that a worldwide

deployment of IoT gateways could revolutionize application-

agnostic connectivity and avoid the stove-piped architectures

existing now.

In [9], the characteristics of different types of low power

wireless networks are discussed and compared, such as,

Bluetooth 4.2 that has a less range and bandwidth, and the

IEEE 802.15.4 standard that defines the physical layer (PHY)

and media access control (MAC) layer for low-power and low

data rate personal area networks, and others. Also, in [10], the

6LowPAN standard was described in details. As its name

implies, 6LowPAN, “IPv6 over Low-Power Wireless Personal

Area Networks”, is a networking technology that enables IPv6

packets to be transported efficiently within small link layer

frames, such as those defined by IEEE 802.15.4. The paper

[11] describes the unique benefits of Z-Wave technology for

smart devices and the Internet of Things, such as, technical

considerations, the role of certification and branding, and

advanced development tools. Z-Wave is a low-power, wireless

mesh network standard that is widely used for M2M and smart

devices in the Internet of Things (IoT), home automation, and

security markets, and, this makes it the best overall choice for

the vast majority of smart device applications.

Paper [12] outlined that the lack of an IP-based network

architecture prevented sensor networks from interoperating

with the Internet, limiting their real-world impact. Also, this

paper discussed the 6LowPAN and RoLL standards proposed

by the IETF working groups with the goal of connecting low-

power and lossy networks to the Internet, and described how

the research community participated in this process of their

design and their open source implementations. In [13], the

authors described Constrained Application Protocol (CoAP)

and other key enabling technologies together with an end-to-

end IP and RESTful Web Services based architecture for

integrating physical world devices in constrained

environments with the Web. In the paper [14], the authors

discussed two open problems. First, the set of existing

solutions for configuration and service management are

insufficiently studied in the framework of the IoT. Second,

current approaches do not suit all the specific requirements

and characteristics of constrained devices, in terms of memory

usage and power consumption in particular. The paper [15]

provides a realization of ultra-low voltage circuit design for

Internet of Things. Semiconductor industries are investing in

introducing power saving features by using ultra low voltage

circuit design, because these devices depend on portable

battery or external power source. Then, there is a need to

reduce the power consumption by designing an ultra-low

voltage circuit for IoT devices. The ultra-low voltage circuit

design for Internet of Things is accomplished by simulating

two input NAND gates in 120nm CMOS technology.

As mentioned before, several former efforts, aimed at

providing a control interface to communicate with multiple

low power devices and/or sensors, were performed. IoT goes

further in opening new possibilities to attach with every smart

device ranging from home appliances, communicating

devices, ending with ultra-low power sensors and embedded

systems.

While some smart devices such as home cinemas and

mobile phones which have enough computing power to allow

them to be attached directly to internet, they cannot actually

host a service oriented interface. On the other hand, there exist

ultra-low power devices such as light, temperature sensors,

etc., as well as devices with restricted computing power. Also,

automotive engine ECU (Electronic Control Unit) and

industrial machine control units, are not applicable for

providing a service oriented interface and may be interrupted

by the overwhelming accompanied web service oriented

interfaces.

III. REQUIREMENTS AND TOOLS

Leveraging the technology of integrating sensors (things)

with web services, some of the relevant components from this

technology tools have been incorporated as SOA-based

Intelligence. We are adjusting the concepts of the design and

implementation of Smart Gateway; that exposes an XML-RPC

web service [16-19], SOAP web service and a RESTful

interface. We embedded C, Python, Perl programming

languages, Redis-server [20, 21]; Contains Redis Daemon and

Redis-cli tool, Arduino studio [22, 23], and, also, Arduino

Uno kit [24] (evaluation board with Atmel, AVR 8bit

microcontroller).

Regarding the project features, and, to meet requirements

that support our obtained intelligent web application, XML-

RPC interface provides the following functions:

• Captures the current “instantly” readings from sensors. It

sends commands to capture Temperature, Humidity,

Smoke, Hydrogen sensor readings.

• Returns Readings from time based log (in SOAP).

• Returns Average values calculated from latest log

recording (in REST).

The conduction of multi-intelligence sensor-based service

web application can fulfill the following required tasks:

1. Proxies XML-RPC request from user application to a

number of sensor Kits, through UDP based binary

messages.

2. Monitor the sensors for new Temperature, Humidity,

Smoke and Hydrogen, then, append the readings to Log

according to a user specified time interval “in seconds”.

3. The implementation includes emulated sensors; these

adopt separate processes which listen to the incoming UDP

messages in same format as a bare metal embedded

evaluation board.

4. In addition, the implementation requires a deployment on a

chip software that will send environment readings to the

service or timer. See figure 1 for the illustrating use-case

diagrams.

The system is implemented such that sensors “on the chip

kits” and emulated ones will only react to the event of

receiving UDP messages. It’s allowed to the on-chip software

to keep doing its dedicated task and only is being interrupted

when needed, instead of having the on-chip software to

broadcast its readings all time. Thus, the application keeps all

configuration at the smart gateway side. In this respect, the

smart gateway acts as a coordinator and a configuration

management tool. For example, user-defined time intervals are

 International Journal of Scientific Engineering and Science
Volume 1, Issue 9, pp. 40-46, 2017. ISSN (Online): 2456-7361

42

http://ijses.com/

All rights reserved

handled by the smart gateway, so we do not need to configure

each chip software to update the provisioned time interval.

The chip software will only respond to events fired by the

smart gateway timer or the web services.

The smart gateway is implemented to accommodate high

workloads, and should allow scaling to several machines. To

achieve this goal, the system services do not keep limits

between requests at all, and autonomously serve the requests

regardless of the machine, that hosts the service in a cluster.

Besides that, the system should make use of a very light

weight messaging style, to allow communication with

resource constrained devices. Though, the messaging style

used in the implementation does not need to reflect real world

protocol due to complexity and testing requirements.

Consequently, the design and development of this project as a

scalable data integration platform interacts with the Python

Redis database and makes use of Data technologies.

Fig. 1. Use-Case diagram for the sensor-based service web application.

IV. SYSTEM ARCHITECTURE

The system ingests intelligence [25-27] data from

representative sensors provided in pre-specified formats, in

order to perform the integration of a variety of intelligence

data as used by intelligence analysts to conduct multi-

intelligence all-source analysis. Structured data comes from

sensors including track data reports, measurements to and

from database. Concerning these processes in system

architecture, proof of implementation concept uses a Reactor

pattern. It provisions simpler design and faster development

time. The current implementation consists of the following

separate processes:

1) A none memory persistent CGI web-application scripts

that act as XML-RPC client.

2) Three CGI XML-RPC services, used for capturing sensor

data from the devices instantly, for returning Log of all

previous readings, and returning average values of all

previous readings.

3) Persistent timer process that sleeps for a user defined time

interval, sends UDP binary messages to devices

synchronously, and appends results to the log also

synchronously “RedisDB”.

4) Real and emulated devices that listen to UDP messages

and send fresh sensor readings back.

5) Log server can be accessed using SOAP interface, returns

all Log contents serialized in XML. while the analyzes

server is RESTful “we implemented different service

styles to demonstrate the interoperability”

While this architecture is simple and enables to distribute

workload on CPU cores, it is not the recommended

architecture for production as we recommend an event-driven

Proactive pattern. A Proactive pattern will handle much more

work-load with less resources, also readings to time accuracy

will not be affected when handling a huge number of devices

per event-based processes. It’s still applicable to create a

cluster of machines to handle workload in both architectures,

as long as the service and its backing processes are stateless.

Figure 2 shows the whole application process of the

system with the smart gateway architecture. The journey of

the request of a web service is illustrated in figure 2 from a

client web application towards the smart gateway.

Fig. 2. The whole application process of the system with a smart gateway

architecture.

V. SYSTEM DESIGN

The smart gateway consists of multiple servers, each

handles user requests, the advantages of this approach is that

we always can deploy the servers on the same or on different

machines, having a socket based services provides us with the

flexibility to scale to multiple machines, each process can be

then assigned more processing power or I/O rate using tools

such as nice or Linux kernel name-spaces. Moreover, we can

actually isolate these processes to ensure security, for example

we can run each server under cheroot, this ensures that each

server is locked into a specified directory and will never be

able to make I/O other than already opened files and sockets.

See class diagram and sequence diagrams for more vision

explanation in figure 3, figure 4 and figure 5.

Another advantage is enabling easier monitoring of

resources consumption, since we have one process handling

every-request “as in pro-actor pattern”, although it might

perform better, but it will not be easy to investigate I/O bottle

necks, unlike in reactor pattern in which we have a clear view

of the status of each process, each process can be analyzed

separately and we can discover bottle necks much easier.

A. Implementation Components

We have two parts of implementation. For the prototype

implementation with Perl, the following components are used:

1) IO:Socket:INET, provides TCP/UDP sockets

 International Journal of Scientific Engineering and Science
Volume 1, Issue 9, pp. 40-46, 2017. ISSN (Online): 2456-7361

43

http://ijses.com/

All rights reserved

2) XML:RPC, client & Server parser/deparser

3) CGI, CGI helper functions

4) Redis/hiredis, either a pure Perl or C based Redis

connectivity

5) HTTP::Headers, HTTP headers helper functions

While the Python implementation, the following

components have been leveraged:

1) socket, global socket interface

2) sys, base system functions

3) xmlrpc.client, xml-rpc client

4) xmlrpc.server

5) SOAP module

6) REST module

7) cgi, CGI helper functions

8) cgitb, CGI helper functions

9) redis: Redis connectivity

Here are three diagrams showing class diagram, and two

sequence ones. The former shows user, device, interrupted ip-

chip, log and Redis database classes. While the two later show

the run-time processes between the web browser (client), CGI,

sensors (device) and timer.

Fig. 3. Class diagram.

Fig. 4. Sequence diagram 1.

B. Interoperability

The smart gateway presents three types of services, XML-

RPC, SOAP and REST, and this allows different clients to

initiate requests from different platforms, all the mentioned

interfaces use text based “XML” serialization of data

structures, this also contribute to the interoperability measure,

since textual data will not require byte ordering

considerations, and hence clients running on different machine

architectures should be able to make use of the smart gateway

interface.

Fig. 5. Sequence diagram 2.

Another factor contributing to interoperability, is the fact

that the smart gateway is fully POSIX compliant, POSIX is

Portable Operating System Interface which is an IEEE

standard for operating system APIs, it includes basic C

standard library as well as a number of low level system-calls,

having the smart-gateway POSIX compliant means, it can run

on a number of Operating systems including: GNU-Linux,

BSD variants, Solaris variants, HP-UX, MS-Windows using

“services for Unix” or Cygwin.

C. Deployment

The software components of the smart-gateway are

composed of three services, that can be deployed either on

same server or on different servers, in figure 6 below each

smart-gateway node has three services installed “multi-core

machines are assumed”, and an HTTP load balancer is used to

distribute the load of requests among the smart-gateway

cluster nodes. Open-source Load balancers provide better

solution than commercial appliances, allow flexibility and fine

tuning of both the proxy server and the underlying OS. Figure

7 shows vertical silos of IoT service deployment.

Fig. 6. Example of deployment model diagram.

The Load-balancer can be configured to make round robin

balancing, or weighted load-balancing, where nodes with more

 International Journal of Scientific Engineering and Science
Volume 1, Issue 9, pp. 40-46, 2017. ISSN (Online): 2456-7361

44

http://ijses.com/

All rights reserved

computing resources get more requests than those with low

lower capacity.

Fig. 7. Vertical silos of IoT service deployment.

The Smart gateway can connect to any IP enabled devices

by default, either locally attached or using VPN, also it is able

to use adapters to access low rate protocols such as RFID. The

adapters can be also locally or remotely attached. Kerberos is

used for authentication, since it provides best symmetric key

authentication in practice for users. Figure 8 shows an

example of Blocky script.

Fig. 8. Example blocky script.

Redis cluster can be deployed in two models:

o Transparent: the smart-gateway is not aware of any

clustering in the back-end, and the cluster can be added

transparently, and it offloads the programming overhead to

a pre-packaged Redis proxy.

o Direct: the smart-gateway is aware of the cluster and it is

responsible of mapping Redis keys to associated nodes.

Though, this model provides no point of failure, it comes

with much programming overhead.

VI. IMPLEMENTATION ISSUES

During the web application time, team faced a number of

obstacles that changed decisions during the prototype

implementation phase, the team found that Python modules

are not always able to work with Perl's, due to the fact that

some Python modules are written and tested only against the

corresponding Python implementations. We had to make a

decision of either re-write code in Python or complete

everything in Perl, the first choice was taken because Python

is more friendly for beginners and easier for everyone to

contribute. Figure 9 shows a system workflow.

Fig. 9. System workflow.

In addition to that, code was written first to support

sending binary messages to sensors using TCP, while this

worked for simulated sensors, Arduino kits by default use

UDP, and compiling TCP stack to it proved very tedious task,

so we opted to change smart-gateway code to be able to send

messages to the Kits using UDP, this proved that the smart-

gateway can easily handle both protocols and that “TCP is still

used with emulated sensors”. Figure 10 shows Python protocol

stack at runtime in Contiki OS inside a WSN node.

Fig. 10. WSN node embedded protocol stack.

Considering the huge amount of data produced every day

in both the commercial and the defense areas, the Big Data

paradigm promotes novel approaches and technologies for

data capture, storage and analytics to deal with “massive

volume of unstructured and structured data that cannot be

managed and processed with traditional databases and

software approaches”. Figure 11 shows data integration,

analytics and management inside IoT.

Fig. 11. Data representation inside IoT.

 International Journal of Scientific Engineering and Science
Volume 1, Issue 9, pp. 40-46, 2017. ISSN (Online): 2456-7361

45

http://ijses.com/

All rights reserved

A. Utilized Tools

1. RedisDB.

We opted to use a NoSQL data store to store Log of sensor

readings and to register new Sensors. The main advantage is

that a NoSQL database will provide security, performance and

scalability, which are described below.

 Security: It will eliminate all vulnerabilities that comes with

SQL databases, and will also allow us to define application

specific name-spaces to ensure controlling application multi-

tenancy. This is possible due to the fact that RedisDB provides

a Key-value interface, where the key can be partitioned within

the application code, this can enhance security by creating a

name space or prefix within the key.

Another security advantage is that we are free to store

different keys on different Redis nodes, and hence we can

implement middle-ware that is able to authenticate requests

from the application “smart-gateway in our case”. Redis runs

on Socket connection, so the smart-gateway will never require

any super user privilege.

 Performance: A NoSQL data-store doesn't require SQL, and

hence no complex SQL query preprocessing is required,

although some NoSQL implementations offer Stored

procedure, which Redis capability doesn't provide, and it is

not needed in our scenario. Another advantage is the ability to

scale to multiple machines, either by partitioning keys or using

a hash function to map keys to different nodes. In the smart-

gateway scenario, no range searches are required, hence a hash

function to map the keys to hosting nodes is preferred since it

offers best performance. While Redis by default use Hash-map

to internally map keys to values, some Redis forks use

different key-value store engines, that support range searches

if required. So Redis also contributes to lose coupling, as it

became also an implementation and not only an interface.

 Scalability: As we mentioned before, Redis is able to run in

clustered fashion, also there exists a number of middle-ware

that functions as a coordinator, that will map keys to nodes

without application interaction “transparent to the

application”. The advantage of scaling to multiple machines is

that we do not need a new infrastructure or complex migration

when the business requirements change. Redis offer elasticity

that will ensure having all components of the application

running on multiple nodes. Another important factor is

handling Denial of Service attacks if we need.

2. GNU-Linux OS.

Linux is the chosen development and test platform, and it is

POSIX compliant, having packages available for all Python,

Perl, C libraries and modules. Virtualization technologies are

available and can be used in testing, Linux Containers (OS

level virtualization), and KVM (full platform virtualization).

3. Nginx.

Used as a reverse proxy that perform HTTP load-

balancing, and it is a single thread master-worker high

performance web-server.

4. Python interpreter.

Available through Debian/Ubuntu GNU-Linux package

managers.

5. Perl interpreter.

Already installed on almost all default Linux/Unix

installations.

VII. FUTURE WORK

The implementation of our multi-intelligent data

integration project system can leverage emerging Big Data

and SOA technologies. While we aim at providing a

comprehensive social beneficial media and exploitation

application, further work is required to deal with embedding

web services in this context. A listener from a specific country

can interact with another one from different land and they can

share their local weather statuses and climate differences.

They can chat, discuss about the surrounding temperature and

how it affects their mood, and exchange songs to listen. As

most of us know, songs bring memories.

Intelligent social sound application may reveal interesting

insights from the analysis of large predictive information by

using appropriate techniques to choose a suitable sound track

depending on the user mood and activity level. The user can

provide a proposed rate of his status power to allow the

application to play a fast-going song for doing workouts for

example, or a slow song for a relaxing time. He/she can show

the ready state for studying and, at this time, the application

can provide a lecture which wasn’t played before to the user.

Eventually, we cannot count the creative ideas which may be

implemented to make this application lead the social media

application all over the world.

Furthermore, potential capabilities, that can extend current

features set in a production implementation include:

1) Add more devices to the smart gateway's control and

monitoring domain dynamically.

2) Add different set of communication protocols for different

devices with varied computing capacities.

3) The use of a more elegant event-driven approach where

more workload can be handled with less resources.

4) Allow clustering the data store keys to multiple machines

to enable scaling the backing data store “Redis”.

5) Implement a real time Ajax based web interface.

6) Add more meta-data related to devices controlled by the

smart gateway such as location, provide processor/micro-

controller architecture in safe operating environments, and

demonstrate if the device is mobile or stationary, etc.

7) Based on previous point, a mash-up can be implemented

with other web-based resources such as Google Maps.

8) Real time shipping of log data to a dedicated analytics

service or time-series database for studying different

behaviors based on the readings collected and other meta-

data.

VIII. CONCLUSION

After experimenting how to build a proof of concept for

smart gateway, the team is convinced that this architecture is

highly efficient and effective, and through it, we are not only

able to communicate to ultra-low power devices and resource

constrained ones, but to create a management center that can

store configuration of varied types of devices, and to extend to

fulfill future requirements easily. We also demonstrate that a

smart-gateway will not only contribute to having more

resource constrained devices connected to the Internet, but

 International Journal of Scientific Engineering and Science
Volume 1, Issue 9, pp. 40-46, 2017. ISSN (Online): 2456-7361

46

http://ijses.com/

All rights reserved

also it can be a very useful reference of data sources for data

scientists.

Big Data technologies represent a shift in terms of

programming approach, and their promise produce an

increasing interest within the data/information management

community. But proposed solutions are still immature, and

first experimentations show that they require incremental

development and testing stages to improve performance. In

our military intelligence context, Big Data performance is

critical if these technologies are to be used in tactical

environments.

REFERENCES

[1] Internet of Things - converging technologies for smart environments and

integrated ecosystems, River Publishers Series in Communications, O.

Vermesan and P. Friess, 2013.

[2] D. Clark, “NewArch: Future Generation Internet Architecture”,
NewArch Final Technical Report, [online] http://www.isi.edu/newarch/

[3] M. Blumenthal and D. Clark, “Rethinking the design of the internet: the

end to end arguments vs. the brave new world,” ACM Transactions on
Internet Technology, vol. 1, issue 1, pp. 70-109, Aug. 2001.

[4] A. Feldmann, “Internet clean-slate design: what and why?”, ACM

SIGCOM Computer Communication Review, vol. 37, issue 3, pp. 59-64,
2007.

[5] M. Andersson, “Short-range low power wireless devices and internet of

things (IoT),” connectBlue, February 2014. [online] http://
www.connectblue.com

[6] D. Blaauw, D. Sylvester, P. Dutta, Y. Lee, I. Lee, S. Bang, Y. Kim, G.

Kim, P. Pannuto, Y.-S. Kuo, D. Yoon, W. Jung, Z. Foo, Y.-P. Chen, S.
Oh, S. Jeong, and M. Choi, “IoT design space challenges: circuits and

systems,” Symposium on VLSI Technology (VLSI-Technology), 2014.

[7] B. Martinez, M. Monton, and J. Daniel Prades, “The power of models:

modeling power consumption for IoT devices,” IEEE Sensors Journal,

vol. 15, issue 10, pp. 5777–5789, 2015.
[8] T. Zachariah, N. Klugman, B. Campbell, J. Adkins, N. Jackson, and P.

Dutta, “The internet of things has a gateway problem,” HotMobile’15

Proceedings of the 16th International Workshop on Mobile Computing
Systems and Applications, New Mexico, USA, February 12–13, 2015.

[9] Low power networks hold the key to IoT, Rethink Technology Research

Ltd, Published June 2015.
[10] 6LoWPAN demystified, J. Olsson, Texas, USA, October 2014.

[11] Z- Z-Wave Wireless Communications for Smart Devices and IoT, Sigma

Designs inc., October 2014.

[12] J. Ko, A. Terzis, S. Dawson-Haggerty and D. E. Culler, “Connecting
low-power and lossy networks to the internet,” IEEE Communications

Magazine, April 2011.

[13] RESTful Web Services for the Internet of Things, M. Laine, Finland,
2011.

[14] H. Petersen, E. Baccelli, and M. Wahlisch, “Interoperable services on

constrained devices in the internet of things,” W3C Workshop on the
Web of Things, Berlin, Germany, June 2014.

[15] M. Kumar, “Realization of ultra low voltage circuit design for internet of

things,” Journal of Electron Devices, Vol. 21, pp. 1801-1805, 2015.
[16] M. Zorrilla, A. Martin, J. R. Sanchez, I. Tamayo, and I. G. Olaizola,

“HTML5-based system for interoperable 3D digital home applications,”

Fourth International Conference on Digital Home, 2012.
[17] X. Liu, K. Tang, J. Hancock, J. Han, M. Song, R. Xu, V. Manikonda,

and B. Pokorny, “SocialCube: A text cube framework for analyzing

social media data,” International Conference on Social Informatics,
2012.

[18] J. E. Stewart, “Implementing an XML authoring project in a new media

course,” IEEE International Professional Communication Conference
(IPCC), 2014.

[19] J. Q. Zhang and K. W. Xie, “Development and application of streaming

media courseware based on XML,” Ninth International Conference on
Intelligent Information Hiding and Multimedia Signal Processing, 2013.

[20] The little Redis Book, K. Seguin, 2012. [online]

http://openmymind.net/redis.pdf.
[21] Redis Cookbook, O’Reilly Media, T. Macedo and F. Oliveira, USA,

2011.

[22] Arduino website. [online] https://www.arduino.cc/en/main/software.
[23] Arduino Programming Notebook, First Edition, B. W. Evans, August

2007.

[24] M. Schwartz, “5 Arduino Starter Kits Reviewed,” 29 March 2016.
[online] https://openhomeautomation.net/best-arduino-starter-kit

[25] J. Roy and A. Auger, “Collective C2 in multinational civil-military

operations,” the Multi-Intelligence Tools Suite – Supporting Research
and Development in Information and Knowledge Exploitation, 16th

International Command and Control Research and Technology
Symposium (ICCRTS), Québec City, Canada, June 21-23, 2011.

[26] M. Á. Serna, C. J. Sreenan, and S. Fedor, “A visual programming

framework for wireless sensor networks in smart home applications,”
IEEE Tenth International Conference on Intelligent Sensors, Sensor

Networks and Information Processing, 2015.

[27] T. Kovácsházy, G. Wacha, T. Dabóczi, C. Erdős, and A. Szarvas,
“System architecture for Internet of Things with the extensive use of

embedded virtualization,” IEEE 4th International Conference on

Cognitive Infocommunications (CogInfoCom), 2013.

