
 International Journal of Scientific Engineering and Science
Volume 1, Issue 7, pp. 70-74, 2017. ISSN (Online): 2456-7361

70

http://ijses.com/

All rights reserved

Design and Implementation of an Interfacing Protocol

between I2C and APB for an AMBA Based SOC

Mukthi S. L.
1
, Dr. A. R. Aswatha

2

1
Department of Electrical and Electronics Engineering Jain University, Bangalore, Karnataka, India

2
Department of Tele Communication Engineering, DSCE, Bangalore, Karnataka, India

Abstract— SOC devices and circuits will consist of sub-circuits which will use different protocols, some will use serial data transmitting

protocols and some will use parallel communication protocols so in this paper we are presenting how to build communication between two

different block which use different protocols. To make communication between these two protocols we developed bridge which consists of APB

slave and I2C master blocks. I2C or I2C stands for “Inter-integrated circuit,” or “inter-IC,” and is a simple, 8-bit, serial communication bus

protocol that uses just two bus wires; a serial data line (SDA) and a serial clock line (SCL). I2C is integrated into many ICs and allows devices

to communicate directly with each other, avoiding CPU cycles. I2C operates on a master-slave basis, and all devices on an I2C bus have a

unique address. I2C is used both internally in integrated chips to communicate between areas in the chip-based circuit, as well as externally,

from chip to chip. This paper presents implementation I2C protocol that interfaces peripheral devices which operates on low speed.

Keywords— ARM Processor, I2C protocol, APB peripherals, AMBA protocol.

I. INTRODUCTION

A multiprocessor environment consists of high performance

processors and also low power consuming processors to

support many different applications. High performance

processors are used for sophisticated and complex processing

applications, for other simple applications low power

consuming processors are used. Thus power is saved.

However, different processors use different protocols to

communicate with peripherals. This is a disadvantage as we

need peripheral clones for different processors that only differ

in protocol. For example if there are 20 peripherals used,

totally 40 peripherals are needed to support a dual processor

environment. This is very ineffective as area is increased

twice. Instead of using 20*2 peripherals we can use 20

peripherals that support one common protocol and an interface

that converts the other protocol to common protocol. This

saves the chip area which is one of the most important

requirements at present scenario.

One such case is when one processor is using AMBA

protocol (ARM processor) and other is using I2C protocol.

AMBA uses APB peripherals and I2C uses I2C supported

peripherals to communicate with external environment. Our

goal is to use only APB peripherals and use an interface that

converts the I2C protocol to APB protocol so that I2C

processors can use the same APB peripherals to communicate.

The area in multiprocessor design which uses ARM processor

for high performance and an I2C processor for low power can

be reduced by good logical design. This involves designing an

interface between the I2C protocol and APB protocol.

II. SPECIFICATIONS

To establish the specifications of an embedded system,

requirements must be defined first. Requirements in designing

an I2C to APB Communication Bridge are:

, SDA

and SCL. SCL is clock for synchronization whereas SDA

provides serial data. Data is sent and received on separate

parallel lines, PRDATA and PWDATA respectively in APB

slaves using PCLK for synchronization.

Therefore serial data must be converted to some common

parallel data and then it has to be converted into an APB

format for sending data from I2C master to APB slave and

vice versa.

must be considered.

From the above requirements specification are defined as

follows:

common parallel format.

parallel format to required APB format.

ata to I2C master at

SCL clock speed and sends and receives data at very high

speed to APB interface

from I2C interface and sends and receives data to/from APB

slave at PCLK clock rate

III. INTERFACING BETWEEN I2C AND APB PROTOCOL

Interfacing between I2C and APB Protocol consists of two

major parts. They are I2C Slave and APB Master as given in

figure 1. These two blocks bridges the communication I2C

Master and APB Slave. I2C Slave receives the data from I2C

Master in respective format and provides it to APB Slave

through APB Master.

In the designed architecture the data communication

happens in two stages. They are:

1. Write Operation

 Whenever I2C Master needs to send data to APB Slave it

would be done via I2C Slave.

 I2C Slave will assert Data Valid and Address Valid signals

to logic high.

 The designed APB Master checks for availability of its

memory and initiates the APB write operation

 International Journal of Scientific Engineering and Science
Volume 1, Issue 7, pp. 70-74, 2017. ISSN (Online): 2456-7361

71

http://ijses.com/

All rights reserved

 Four bytes of data from I2C will be stored serially at four

consecutive locations of APB Memory.

 After transfer of each byte APB Master keeps a check on

count whether all four memory locations are updated

successfully.

 As soon as the data at Memory updated successfully APB

Master transfers the same 32-bit data to APB Slave

paralaly.

Fig. 1. Block diagram of proposed communication bridge.

2. Read Operation

 Here again when I2C need to read data from the APB

Slave, communication will take place via APB Master to

I2C Slave to I2C master.

 I2C Slave fetches the data which is transmitted by APB

slave on to APB Master internal memory.

IV. DESIGNED INTERFACE

The designed I2C slave part as in figure 2 gets the data and

address from the given I2C inputs SCL, SDA. It takes NACK

as an input from the APB master side of design and sends

acknowledgement signal for every 8 bits to I2C master as it is

required by I2C protocol. Acknowledgement is sent whenever

NACK is high and acknowledgement is not sent when NACK

is low.

This part also provides control signals required by APB

master architecture design. The data (8 bit) and address of

register (32 bit) obtained are given as input for designed APB

master for further use. APB master actually uses these data,

address and control signals to send data to APB slave

following APB protocol. When I2C master requires data from

APB slave, designed I2C slave interface asserts the LOAD

signal to start APB read operation and takes the data from the

APB master interface during I2C read cycle and writes the

data to I2C master via SCL and SDA according to I2C

protocol.

The designed APB master consists of three blocks:

Input interface: The input interface in APB master saves the

address in a register when ad_v=1, to access it whenever APB

slave is ready for data communication. It also saves the data

from 8-bit data bus into a memory. Input interface is also used

while reading data from APB slave, it setups the number of

read operations to receive data from APB slave whenever I2C

master initiates read operation. It sends NACK signal to the

I2C slave whenever the APB slave is busy or memory is

already full and cannot store data anymore.

Fig. 2. Designed interface.

Fig. 3. I2C slave interface.

Memory: 2 memory blocks are available one is 8-bit wide

256 block depth and another is 32-bit wide 4 block depth.

Data is stored in FIFO (first in first out) manner. It is used as a

buffer to store 8-bit data in blocks.

Every time it completely receives 4 blocks of 8-bit data

from same I2C master it increments the count value. Count

value indicates the total number of remaining blocks of 32-bit

data. This value is used to know the number of write setup

operation required.

Two memory blocks are designed one block is used for

I2C read operation (I2C reads data from APB slave) which is

32-bit wide 4 block depth and while another is used for I2C

write operation which is 8-bit wide 256 block depth.

Output interface: This block communicates with APB slave

as per APB protocol, it uses the address stored in register and

 International Journal of Scientific Engineering and Science
Volume 1, Issue 7, pp. 70-74, 2017. ISSN (Online): 2456-7361

72

http://ijses.com/

All rights reserved

data stored in memory by input interface during I2C write

operation and sends PCLK, PADDR, PENABLE, PWRITE,

PWDATA, PREADY, PRDATA, PSLVERR etc. APB signals

according to protocol requirement.

It also sends data to I2C slave during I2C read operation

which is collected by input interface from APB slave. Output

interface uses the count value given by memory during write

operation to know the blocks of 32-bit data still to be delivered

and setups the number of write operation accordingly.

Designed Interface Intermediate Signals

The I2C slave and APB master in designed interface

communicates with the intermediate signals.

TABLE 1. Interface Intermediate signal description

Signals Description

32 Bit

Address

bus

The register address of APB slave from which the data is read

or written is sent serially via SDA from or by I2C master. This
serial 32 bit address is converted into parallel data and given as

output to APB master.

8 Bit Data

bus

This is a bidirectional bus, as an output bus it carries 8-bit data

which is to be written on APB slave and as an input bus it
carries 8-bit data to be read by I2C master

R/W-

Signal

Indicates the read or write operation to APB master so that it

knows whether to read the data from I2C slave or write the date
to I2C slave

Address

Valid
ad_v, It indicates 32-bit address bus has valid address or not.

Data Valid d_v, It indicates 8-bit data bus has valid data or not.

NACK
This signal indicates that APB slave is busy at the moment and
cannot the read the data from I2C master via I2C slave; it is

used by I2C slave to send NACK signal to the I2C master.

Finish Used to indicate that current transfer from I2C is finished.

Cancel
This signal is used to indicate that I2C master cancelled the data

transfer.

Flowcharts

The two flowcharts shown below for two designed sub-

modules gives a summarized view of source code.

Figure 4 gives an idea about I2C slave interface part, it

takes SCL, SDA, NACK and Data-in as inputs and Load,

Read, Finish, Cancel, Data valid, Address valid and R/W-

gives as output signals.

Figure 5 shows the dataflow of designed APB master

interface, the outputs provided from designed I2C slave,

PRDATA and PREADY are inputs to APB master part.

Data_in and other APB slave signals are output from this

designed interface.

Fig. 4. Flowchart of designed I2C slave interface.

 International Journal of Scientific Engineering and Science
Volume 1, Issue 7, pp. 70-74, 2017. ISSN (Online): 2456-7361

73

http://ijses.com/

All rights reserved

Fig. 5. Flowchart of Designed APB master interface.

V. SIMULATION RESULTS

Write Operation:

After start condition The bridge receives the 8bits on SDA

in sync using SCL clock. First 7 bits are I2C slave address and

8th bit is read/ i e
 i

compa ing he eceived add ess i h idge’s i2c slave

address (I2C slave address for this is assumed to be 0000000).

 hen ead i e
 i is sed o de e mine he pe of

operation (read or write) I2C master is looking for

 If he device add ess ma ches i fi s sends

ac no ledgemen and hen i pe fo ms a ead ope a ion f om

 if ead i e
 is and pe fo ms a i e ope a ion if

 ead i e
 is He e since SDA=0 for 8 SCL clk periods the

device address is matched and an I2C write operation is

started. An acknowledgment is sent by the design as device

address is matched.

Next, SCL remains same for this part and SDA is loaded

with 32 APB slave register address bits serially for 32 SCL

pulses. Between each 8 bits SDA is unforced to receive

acknowledgement from the design. In the figure 7, it is loaded

with 11111111110011111111111111111111.

while sending acknowledgements for each 8 bits. The received

register address is 11111111110011111111111111111111.

intermediate signal and address valid (ad_v) is asserted.

After 32 bit register address is loaded, The SDA is forced to

provide data (minimum 32 bits) for every SCL clock period.

For every 8 bits it is unforced as in previous case to receive

acknowledgement from the design block.

10001111, and 11111111.

11111111100011111111111111001111. Data valid is asserted

and also acknowledgement is sent to I2C master for every 8

bits.

d to 1 for APB

communication.

design at different PCLK periods for the APB write operation.

Read Operation:

APB read operation when I2C master signals read

operation

loading APB register address. The loaded register address is

111111111111001111000001.

ss is sent as

0000000(repeated as APB write part)

cases. Now the SDA is forced to give 1 to signal a APB read

operation.

from APB

f e eceiving s i s as device add ess and

 ead i e
 an ac no ledgemen is sen as an o p on

as shown in figure 7.5.

bits each time in sync with SCL.

its SDA is forced to send acknowledgement

to the design block.

back to idle condition.

and the design goes back to idle condition.

 International Journal of Scientific Engineering and Science
Volume 1, Issue 7, pp. 70-74, 2017. ISSN (Online): 2456-7361

74

http://ijses.com/

All rights reserved

Fig. 6. I2C Slave address loaded and verified.

Fig. 7. 32-bit APB register address loaded.

Fig. 8. 32-bit received data from I2C Master is loaded into PWDATA.

Fig. 9. I2C Master reading data from APB Slave.

VI. CONCLUSION

This paper Implementation of I2C Protocol Interface

which build the bridge between I2C and APB is proposed.

Implementation of the proposed design is done in ModelSim-

Altera Starter Edition 6.5e, using Verilog HDL.I2C Bus

protocol was designed based on NXP Semiconductors

standards. Read and Write operation of I2c master is verified

and simulation results are discussed clearly. Data flow from

I2C master to I2C slave to APB master to APB Slave is shown

in simulation results.

Future work

We designed the interface considering that an APB slave

cannot initiate the read or write operation. Both read and write

operations are assumed to be initiated by I2C master only. If,

in future APB slaves come with write and read operation

initiation capability, future work is needed to modify the

interface to support this capability. This capability can also be

used to increase the allowed delay for APB slave to send or

receive data. Further the interface could be improved to

support multiple I2C masters accessing APB slaves using

different techniques like polling, token passing etc.

REFERENCES

[1] J. J. a el and H oni, “Design and implementation of I2C bus
controller using verilog,” Journal of Information, Knowledge and
Research in Electronics and Communication Engineering, ISSN: 0975 –
6779, vol. 02, issue 02, pp. 520-522.

[2] Philips Semiconductors: PCF 8584, I2C bus controller

datasheet,http://www.semiconductors.philips.com/acrobat/datasheets/PC
F8584_4.

[3] Samir Palnitkar, Verilog HDL, second Edition.

[4] J. K. Singh, M. Tiwari, and V. Sharma, “ esign and implementation of
I2C mas e con olle on F G sing VH L,” International Journal of

Engineering and Technology (IJET), vol. 4, no. 4, pp. 162-166, 2012.

[5] A. K. Oudjida, M. L. Berrandjia, R. Tiar, A. Liacha, and K. Tahraoui,
“F G implementation of I2C& SPI protocols: A comparative study,”

IEEE, 2009.

[6] S. Devakrupa and D. Desai, “ esign of I2C-APB protocol,”
International Journal of Engineering Sciences & Research Technology,

vol. 5, issue 11, pp. 330-335, 2016.

[7] J. Chhikara, R. Sinha, and S. Kala, “ esigning communication bridge
between I2C and APB,” IEEE International Conference on

Computational Intelligence & Communication Technology, 2015.

